

Bidirectional Encoder Representations from Transformers

Transformer

Word

Bidirectional Encoder Representations from Transformers

Transformer
 Word
 Representation (vector)

Task:cloze task, or masked language model, MLM Bidirectional: jointly conditioning on both left and right context
\qquad dogs and cats.

Bidirectional Encoder

Representations from Transformers

Transformer
 Word

 Representation (vector)

input sequence: token by token (X)
input sequence: the entire sequence (O) now the model can be accelerated by the GPUs \Rightarrow less time consuming

Bidirectional Encoder Representations from Transformers

Transformer

Word

Representation (vector)

We don't need labeled data to pre-train these models.

Bidirectional Encoder Representations from Transformers

Transformer
 Word
 Representation (vector)

Task:cloze task, or masked language model, MLM Bidirectional: jointly conditioning on both left and right context
\qquad dogs and cats.

Model Fine-Tuming

The process that trains the pre-trained model (trained on a huge dataset) on our relatively smaller dataset.

Train the entire architecture

 Feed the output to a softmax layer: The error is back-propagated through the entire architecture and the pre-trained weights of the model are updated based on the new dataset.
Model Fine-Tuning

The process that trains the pre-trained model (trained on a huge dataset) on our relatively smaller dataset.

Train partially:

Keep the weights of initial layers of the model frozen while we retrain only the higher layers. (test and try)

Model Fine-Tuming

The process that trains the pre-trained model (trained on a huge dataset) on our relatively smaller dataset.

Train the new ones:
Freeze all the layers of the model and attach a few neural network layers of our own. Weights updated: the attached layers

Bidirectional Encoder

Representations from Transformers

Transformer

Word

Encoder

$$
\begin{gathered}
\text { E.g. } \\
\text { tokenizer("睡覺要㞗") }
\end{gathered}
$$

Representation （vector）

Tokenization unit： character
\｛＇attention＿mask＇：［1，1，1，1，1，1］，
CLS
＇input＿ids＇：［101，3152，3315，2968，1242，102］，
‘Token＿type＿ids：$[0,0,0,0,0,0]\}$

Bidirectional Encoder

Representations from Transformers

Transformer

Encoder

Word

Representation

 （vector）E.g.
tokenizer（［＇貓追狗＇，＇貓追老鼠＇］

padding

$$
\begin{array}{r}
\text { 'input_ids': } \begin{array}{r}
{[101,6506,6841, ~ 4318, ~ 102, ~ 0], ~} \\
{[101,6506, ~ 6841,5439, ~ 7962, ~ 102] ~}
\end{array}
\end{array}
$$

Bidirectional Encoder

Representations from Transformers

Bidirectional Encoder

Representations from Transformers

Training Arguments：

－learning＿rate（LR）：
最重要的參數，通常在BERT裡是1e－5～1e－4左右。可以想成模型在更新參數時有多「衝動」
－batch＿size：每次模型要處理幾句，愈多句速度愈快，訓練效果也可能比較好。但愈多會耗愈多記憶體。
－num＿train＿epochs：要把整個資料走過幾次。

