Bert

@ Bidirectional Encoder !
Representations from Transformers

©
| Transformer i
Word Encoder Representation
> (vector) |
E.Q.
¢ Education/Love/Job ©

, @ LabelEncoder() @

0/1/2

@ Bidirectional Encoder !
Representations from Transformers

©
I Transformer -
Word) Representation
< (vector) o
* Task:cloze task, or masked language model, MLM ©

Bidirectional: jointly econditioning on both left and right context @
s

[dogs and cats.

®

©

--o@

Bidirectional Encoder
Representations from Transformers

Transformer ¢

Word < >Representation
(vector) o

input sequence: token by token (X) @
input sequence: the entire sequence (O)

now the model can be accelerated by the GPUs
= less time consuming @

®

©

-..@

Bidirectional Encoder
Representations from Transformers

Transformer

Word < >Representation

(vector)

We don’t need labeled data to pre-train these models.

@ Bidirectional Encoder !
Representations from Transformers

©
I Transformer -
Word) Representation
< (vector) o
* Task:cloze task, or masked language model, MLM ©

Bidirectional: jointly econditioning on both left and right context @
s

[dogs and cats.

é Model Fine-Tuning

©

ooo@

The process that trains the pre-trained model
(trained on a huge dataset) on our relatively
smaller dataset.

Train the entire architecture

Feed the output to a softmax layer:

The error is back-propagated through the
entire architecture and the pre-trained
weights of the model are updated based on
the new dataset.

é Model Fine-Tuning

©

ooo@

The process that trains the pre-trained model

(trained on a huge dataset) on our relatively
smaller dataset.

Train partially:

Keep the weights of initial layers of the
model frozen while we retrain only the
higher layers. (test and try)

é Model Fine-Tuning

©

ooo@

The process that trains the pre-trained model
(trained on a huge dataset) on our relatively
smaller dataset.

Train the new ones:

Freeze all the layers of the model and attach
a few neural network layers of our own.
Weights updated: the attached layers

®

©

--o@

Bidirectional Encoder

Pre-processing

Representations from Transformers

Transformer
Encoder

Word >

E.Q.
tokenizer(“ERIER")

tokenizer()
{'attention_mask':[1,1,1,1,1,1],

CLS
‘input_ids':[101,3152,3315,2968,
‘Token_type ids: [0,0,0,0,0,0]}

Representation
(vector)

Tokenization unit:
character

SEP
1242,102],

@ Bidirectional Encoder
Representations from Transformers

©

--o©

Word

tokenizer()

'input_ids":[101, 100, 7791, 7793, 100, 102]

Transformer

Encoder

)

E.Q.

CLS UNK

Pre-processing

Representation
(vector)

tokenizer(“ {8 EE")
@ Out of Vocabulary(O0V) @

UNK SEP

©

©

o, . Pre.)
@ Bidirectional Encoder OeEEEl) [y
Representations from Transformers

O Transformer |
L9 Encoder _
Word > Representation
(vector)
E.g.

tokenizer(['S8:1E8%", 'SHEZE'] ®

i)
tokenizer() padding - ©

| 'input_ids':[101, 6506, 6841, 4318, 102, 0], @
[101, 6506, 6841, 5439, 7962, 102]

Model training S

@ Bidirectional Encoder

[]
Representations from Transformers
@ Ou;pul ®
[Output Projection
© 1
.o [D
/ & 5 SPCEREC IS = = o \ f-»(. Add & Normalize -)
E C S : : (Feed Forward) (Feed Forward)
ﬂ12] ——) | é -;(- ---------- A: d_d-;(_l\l-o_r;n_a-li;;---)
1 2 (— — ENCODER) | * @
| e o e O o o o - I | @ C Self-Attention)
E 1| ENCODER) . g’""\i’, ________ e ———————— Y
S R N I R @ ®
‘i - BERT | X1 l_l_l_l_] X2 _I_I_l_l @
~ o Thinking Machines
1
Embeddings
® | Word |+(Position |+ Type |
Input

®

©

...@

(J (J Y M d I t .)
Bidirectional Encoder odel training

Representations from Transformers

Training Arguments:
e learning_rate (LR):

X2 BB, BEAEBERTEEle-5~1e-4E %, A LITERL
BREEEHBHHEZEHE]

e batch_size: BREHZFIRHE A, MBSANEFERIR, FIFERL
RthAIRELLER T, (ER S ERR L LR,

e num_frain_epochs: EEREE R EBE X,

