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now the model can be accelerated by the GPUs
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We don’t need labeled data to pre-train these models.
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The process that trains the pre-trained model
(trained on a huge dataset) on our relatively
smaller dataset.

Train the entire architecture

Feed the output to a softmax layer:

The error is back-propagated through the
entire architecture and the pre-trained
weights of the model are updated based on
the new dataset.
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The process that trains the pre-trained model

(trained on a huge dataset) on our relatively
smaller dataset.

Train partially:

Keep the weights of initial layers of the
model frozen while we retrain only the
higher layers. (test and try)
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The process that trains the pre-trained model
(trained on a huge dataset) on our relatively
smaller dataset.

Train the new ones:

Freeze all the layers of the model and attach
a few neural network layers of our own.
Weights updated: the attached layers
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tokenizer(“ERIER")

tokenizer()
{'attention_mask':[1,1,1,1,1,1],

CLS
‘input_ids':[101,3152,3315,2968,
‘Token_type ids: [0,0,0,0,0,0]}
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Tokenization unit:
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tokenizer(['S8:1E8%", 'SHEZE'] ®

i)
tokenizer() padding - ©

| 'input_ids':[101, 6506, 6841, 4318, 102, 0], @
[101, 6506, 6841, 5439, 7962, 102]
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Bidirectional Encoder odel training

Representations from Transformers

Training Arguments:
e learning_rate (LR):

X2 BB, BEAEBERTEEle-5~1e-4E %, A LITERL
BREEEHBHHEZEHE ]

e batch_size: BREHZFIRHE A, MBSANEFERIR, FIFERL
RthAIRELLER T, (ER S ERR L LR,

e num_frain_epochs: EEREE R EBE X,




