©

Transition-Based
Dependency
Parsing

Tradition-Based

Beam Search

Transitions: produce a new
configuration given current
configuration

Parsing is the task of
* Finding a sequence of transitions

* That leads from start state to
desired goal state

Transitions: produce a new ?
configuration given current

configuration
[
...@ * Start state * End state
* Stack initialized with ROOT node + Stack and word list i
* Input buffer initialized with words |:> ackand word istsare .emp y'
I eaRtanza * Set of dependency relations = final

* Dependency relation set = empty RalsE

©. oo

Parsing is the task of
* Finding a sequence of transitions

° * That leads from start state to
desired goal state

Transition-Based Parsing lllustrated

|(>h|
nmod\
I

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
5 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 | [root, book, the, morning, flight] | [] LEFTARC | (morning « flight)
7 [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC | (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

OTNCREN] Trace of a transition-based parse.

©

©

Input buffer
®
wl [w2 wn
©
\J
s1 P Dependency
s2 Al Action LEFTARC Relations
Stack RIGHTARC —
w3 w2
SHIFT
sn ®)
IDTNICHER]Y Basic transition-based parser. The parser examines the top two elements of the
® stack and selects an action by consulting an oracle that examines the current configuration. D)

* Builds on shift-reduce parsing
[Aho & Ullman, 1927]

* Goal of parsing

* find a final configuration where
* all words accounted for
* Relations form dependency tree

Stack

s1

s2

sn

Input buffer

wl | w2

wn

Parser

Oracle: decide which transition to apply to build the parse

Action

LEFTARC

RIGHTARC —™
SHIFT

Dependency
Relations
3 '

w w2

IDTNICHER]Y Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action by consulting an oracle that examines the current configuration.

o Transition Intuition

© * Assign the current word as the head of some previously seen word,
* Assign some previously seen word as the head of the current word, *
.© e Postpone dealing with the current word, storing it for later processing.
« Transition Operators (Shift-Reduce Parsing) i
©)

* LEFTARC: Assert a head-dependent relation between the word at the top of
the stack and the second word; remove the second word from the stack. @

* * RIGHTARC: Assert a head-dependent relation between the second word on
the stack and the word at the top; remove the top word from the stack;
® e SHIFT: Remove the word from the front of the input buffer and push it onto

the stack.

©

..@

e Preconditions

* ROOT cannot have incoming arcs
* LEFT-ARC cannot be applied when ROOT is the 2" element in stack
* LEFT-ARC and RIGHT-ARC require 2 elements in stack to be applied

R

“% CEETARE Dependency
E) ACHOH Relations
Stack RIGHTARC —*

= w3 w2
. - SHIFT

Oracle: decide which transition to appiy to build the parse
* LEFTARC: Assert a head-dependent relation between the word at the top of
the stack and the second word; remove the second word from the stack.
* RIGHTARC: Assert a head-dependent relation between the second word on
the stack and the word at the top; remove the top word from the stack;
e SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

©

C

Arc standard transition systems

The transition operators only assert relations
between elements at the top of the stack, and once
an element has been assigned its head it is
removed from the stack and is not available for

“@ further processing.

e Transition Operators (Shift-Reduce Parsing)

* LEFTARC: Assert a head-dependent relation between the word at the top of
the stack and the second word; remove the second word from the stack. O)

* RIGHTARC: Assert a head-dependent relation between the second word on
the stack and the word at the top; remove the top word from the stack;

® e SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

e Parsing means making a sequence of transitions through

the space of possible configurations.
®
© *Startstate * End state
o * Stack initialized with ROOT node * Stack and word lists are empty
* Input buffer initialized with words |:> . . m
T Set of dependency relations = final
* Dependency relation set = empty parse
©
function DEPENDENCYPARSE(words) returns dependency tree tee
state < {[root], [words], [] } ; initial configuration
® while state not final @
t< ORACLE(state) ; choose a transition operator to apply

state <— APPLY(t, state) ; apply it, creating a new state
return state

ISMNYVBERY A generic transition-based dependency parser

* Builds on shift-reduce parsing
[Aho & Ullman, 1927]

* Goal of parsing

* find a final configuration where
* all words accounted for
* Relations form dependency tree

Input buffer

wl | w2

wn

s
s2

Parser

Stack

Action

LEFTARC

RIGHTARC —™
SHIFT

Dependency
Relations

— A

w3 w2

sn| Oracle: decide which transition to apply to build the parse

IDTNICHER]Y Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action by consulting an oracle that examines the current configuration.

The process ends when all the words in the sentence have been consumed

and the ROOT node is the only element remaining on the stack.
Each word must first be shifted onto the stack and then later reduced.

Transition-Based Parsing lllustrated

|(>h|
nmod\
I

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
5 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 | [root, book, the, morning, flight] | [] LEFTARC | (morning « flight)
7 [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC | (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

OTNCREN] Trace of a transition-based parse.

©

©

Transition-B.

mh[

rno
dobj [_m)d\

Book me the morning flight

* LEFT-ARC:

* create head-dependent rel. between word at top of stack and 2" word (under

top)

* remove 2" word from stack

* RIGHT-ARC:

top

* Remove word at top of stack

s [SHIFT

NSUBJ

oBJ

* Remove word at head of input buffer

* Push it on the stack

* Create head-dependent rel. between word on 2" word on stack and word on

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
) [root, book, the, morning]| | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning « flight)
7 [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC | (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

OTNCREN] Trace of a transition-based parse.

* LEFT-ARC:
* create head-dependent rel. between word at top of stack and 2" word (under
top)
* remove 2"d word from stack NSUBJ
* RIGHT-ARC:

it s * Create head-dependent rel. between word on 2"4 word on stack and word on
[ransition-B. o
» Remove word at top of stack oBJ

rnn loh[
* SHIFT
b / ';mm - § * Remove word at head of input buffer
* Push it on the stack

Book me the morning flight

Step Stack | Word List Action Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

| [root, book] | [me, the, morning, flight] SHIFT

2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)

3 [root, book] | [the, morning, flight] SHIFT

4 [root, book, the] | [morning, flight] SHIFT

) [root, book, the, morning]| | [flight] SHIFT

6 [root, book, the, morning, flight] | [] LEFTARC | (morning « flight)

Relation Examples with head and dependent
NSUBJ United canceled the flight.
OBJ United diverted the flight to Reno.

We booked her the first flight to Miami.

®
©
@)

* LEFT-ARC:
* create head-dependent rel. between word at top of stack and 2" word (under ¢
top)
* remove 2"d word from stack NSUBJ
* RIGHT-ARC:
* Create head-dependent rel. between word on 2" word on stack and word on
top
* Remove word at top of stack OoBJ ®
* SHIFT
@ = u * Remove word at head of input buffer
o * Push it on the stack
Book me the morning flight
Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
©

At Step 1, LEFTARC is not applicable in the initial configuration since it asserts
a relation, (root <~ book), not in the reference answer; RIGHTARC does assert a @

¢ relation contained in the final answer (root — book), however book has not been
attached to any of its dependents yet, so we have to defer, leaving SHIFT as the only
° possible action. The same conditions hold in the next two steps. In step 3, LEFTARC

is selected to link the to its head.

o Arc Eager Transition System

allowing words to be attached to their heads as early as possible,
before all the subsequent words dependent on them have been seen.

* LEFTARC: Assert a head-dependent relation between the word at the front of

the input buffer and the word at the top of the stack; pop the stack.

* RIGHTARC: Assert a head-dependent relation between the word on the top of
the stack and the word at the front of the input buffer; shift the word at the
front of the input buffer to the stack.

* SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

* REDUCE: Pop the stack.

@ o Arc Eager Transition System

©

-..@

Differences

* The LEFTARC and RIGHTARC operators are applied to the top of the
stack and the front of the input buffer
* 1nstead of the top two elements of the stack as in the arc-standard approach

* The RIGHTARC operator now moves the dependent to the stack from
the buffer rather than removing it
* making it available to serve as the head of following words

* The new REDUCE operator removes the top element from the stack

Beam Search to Transition-based Parsing

* Apply all applicable operators to each state on an agenda and then
score the resulting configurations

* Add each of these new configurations to the frontier, subject to the
constraint that there has to be room within the beam

* Once the agenda reaches the limit, we only add new configurations
that are better than the worst configuration on the agenda

* Assigning a score to all the possible transitions and picking the best
one

* Define the score for a new configuration as the score of its predecessor
plus the score of the operator used to produce it

ConfigScore(cp) = 0.0
ConfigScore(c;) = ConfigScore(ci—1)+ Score(ti,ci-1)

